skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Murray, Bryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract As the world races to decarbonize power systems to mitigate climate change, the body of research analyzing paths to zero emissions electricity grids has substantially grown. Although studies typically include commercially available technologies, few of them consider offshore wind and wave energy as contenders in future zero-emissions grids. Here, we model with high geographic resolution both offshore wind and wave energy as independent technologies with the possibility of collocation in a power system capacity expansion model of the Western Interconnection with zero emissions by 2050. In this work, we identify cost targets for offshore wind and wave energy to become cost effective, calculate a 17% reduction in total installed capacity by 2050 when offshore wind and wave energy are fully deployed, and show how curtailment, generation, and transmission change as offshore wind and wave energy deployment increase. 
    more » « less
  2. Quantifying the relationship of different grass functional groups to increasing woody plant cover is necessary to better understand the effects of woody plant encroachment on grasslands. This study explored biomass production responses of three perennial grass groups based on photosynthetic pathway and potential canopy height (C4 short-grasses, C3 midgrasses, and C4 midgrasses) to different percent canopy covers of the surrounding deciduous woody legume, honey mesquite (Prosopis glandulosa). Two methods were used to determine mesquite canopy cover, line-intercept and geospatial analysis of aerial images, and both were used to predict production of the three grass groups. Five years of grass production data were included in the mesquite cover/grass production regressions. Two yr had extreme grass production responses, one due to drought and the other to high rainfall. Of the 3 remaining yr, best-fit curves were negative linear for C4 short-grasses and C3 midgrasses and negative sigmoidal for C4 midgrasses using both cover determination methods, although slopes of the curves differed between cover determination methods. C4 midgrasses were more sensitive than the other grass groups to increasing mesquite cover. Loss of production potential when mesquite cover increased from 0% to 35% was 75.5%, 28.7%, and 23.2% for C4 midgrasses, C3 midgrasses, and C4 short-grasses, respectively. Moreover, production potential of C4 midgrasses under no mesquite cover was 3 and 6 times greater than C3 midgrasses or C4 short-grasses, respectively. Spatial settings of the different grass groups in relation to mesquite tree size and size of intercanopy areas provided indirect evidence that the process of mesquite encroachment in the past 50−100 yr may have negatively impacted C4 midgrasses more than the other grass groups. Results suggest that gains in grass production following mesquite treatment would be limited if the system has degraded to where only C3 midgrasses and C4 short-grasses dominate. 
    more » « less
  3. Abstract Combined Hf-O isotopic analyses of zircons from tuffs and lavas within the Sierra Madre Occidental (SMO) silicic large igneous province are probes of petrogenetic processes in the lower and upper crust. Existing petrogenetic and tectonomagmatic models diverge, having either emphasized significant crustal reworking of hydrated continental lithosphere in an arc above the retreating Farallon slab or significant input of juvenile mantle melts through a slab window into an actively stretching continental lithosphere. New isotopic data are remarkably uniform within and between erupted units across the spatial and temporal extent of the SMO, consistent with homogeneous melt production and evolution. Isotopic values are consistent with enriched mantle magmas (80%) that assimilated Proterozoic paragneisses (~20%) from the lower crust. δ18Ozircon values are consistent with fractionation of mafic magma and not with assimilation of hydrothermally altered upper crust, suggesting that the silicic magmas evolved at depth. Isotopic data agree with previous interpretations where voluminous juvenile melts entered the lithosphere during the transition from a continental arc experiencing slab rollback (Late Eocene) to the arrival of a subducting slab window (Oligocene and Early Miocene) and failure of the upper plate leading to the opening of the Gulf of California (Late Miocene). An anomalously large heat flux and extension of the upper plate allow for the sustained fractionation of the voluminous SMO magmas and assimilation of the lower crust. 
    more » « less
  4. null (Ed.)